应用统计系

副教授

吴鹏

  • 邮箱:pengwu@btbu.edu.cn

    地址:北京市房山区4556银河国际在线良乡主校区东区4556银河国际在线209室

    个人简介

    4556银河国际在线副教授,硕士生导师籍贯江西省新余市。现任中国现场统计研究会因果推断分会理事北京生物医学统计与数据管理研究会理事个人主页: https://pengwu.site

    研究兴趣

    主要研究方向因果推断、缺失数据、可信人工智能、推荐系统、医疗决策

    主讲课程

    本科生课程数据挖掘数据分析与统计软件《随机过程》

    习经历

    2011年9月-2015年7月,江西财经统计学专业,经济学学士;

    2015年9月-20176月,北京师范大学概率论与数理统计专业,理学硕士;

    2017年9月-2020年6月,北京师范应用统计专业,理学博士

    工作经历

    20207月-20226月,北京大学北京国际数学研究中心,博士后;

    20226月至今,4556银河国际在线,教授

    主要科研项目

    1. 国家自然科学基金青年基金基于数据融合的长期因果效应研究20241月-202612月,主持

    2. 横向项目推荐系统中的反事实可解释性与长短期因果效应估计技术研究20238-20248月,主持

    主要学术成果

    发表论文30篇,获专利3项。主要有:

    [1] Haoxuan Li, Chunyuan Zheng, Sihao Ding, Peng Wu*, Zhi Geng, Fuli Feng, and Xiangnan He, (2024), Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference for Recommendation. The Twelfth International Conference on Learning Representations. (ICLR 24)

    [2] Honglei Zhang, Shuyi Wang, Haoxuan Li, Chunyuan Zheng, Xu Chen, Li Liu, Shanshan Luo*, Peng Wu* (2024), Uncovering the Limitations of Eliminating Selection Bias for Recommendation: Missing Mechanisms, Disentanglement, and Identifiability. (ICDE 24)

    [3] Wenjie Hu, Xiao-Hua Zhou, and Peng Wu* (2023), Identification and estimation of treatment effects on long-term outcomes in clinical trials with external observational data. Statistica Sinica

    [4] Haoxuan Li, Chunyuan Zheng, Yanghao Xiao, Hao Wang, Fuli Feng, Xiangnan He, Zhi Geng, and Peng Wu* (2023), Removing Hidden Confounding in Recommendation: A Unified Multi-Task Learning Approach. Thirty-seventh Conference on Neural Information Processing Systems. (NeurIPS 23)

    [5] Haoxuan Li, Chunyuan Zheng, Yixiao Cao, Zhi Geng, Yue Liu*, and Peng Wu* (2023), Trustworthy Policy Learning under the Counterfactual No-Harm Criterion. Fortieth International Conference on Machine Learning. (ICML 23)

    [6] Haoxuan Li, Yanghao Xiao, Chunyuan Zheng, Peng Wu*, and Peng Cui (2023), Propensity Matters: Measuring and Enhancing Balancing for Recommendation. Fortieth International Conference on Machine Learning. (ICML 23)

    [7] Haoxuan Li, Quanyu Dai, Zhenhua Dong, Xiao-Hua Zhou, and Peng Wu* (2023), Multiple Robust Learning for Recommendation. Proceedings of the 37th AAAI Conference on Artificial Intelligence. (AAAI 23, Oral)

    [8] Haoxuan Li, Yan Lyu, Chunyuan Zheng, and Peng Wu* (2023), TDR-CL: Targeted Doubly Robust Collaborative Learning for Debiased Recommendations. Proceedings of the 11th International Conference on Learning Representations. (ICLR 23)

    [9] Haoxuan Li, Chunyuan Zheng, and Peng Wu* (2023), StableDR: Stabilized Doubly Robust Learning for Recommendation on Data Missing Not at Random. Proceedings of the 11th International Conference on Learning Representations. (ICLR 23)

    [10] Haoxuan Li, Yanghao Xiao, Chunyuan Zheng, and Peng Wu* (2023), Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased Recommendations. Proceedings of the ACM Web Conference 2023. (WWW 23, Best Student Paper Runner-up)

    [11] Peng Wu, Zhiqiang Tan, Wenjie Hu, and Xiao-Hua Zhou (2022), Model-Assisted Inference for Covariate-Specific Treatment Effects with High-dimensional Data. Statistica Sinica.

    [12] Peng Wu, Shasha Han, Xingwei Tong, and Runze Li (2022), Propensity score regression for causal inference with treatment heterogeneity. Statistica Sinica.

    [13] Sihao Ding, Peng Wu*, Fuli Feng, Yitong Wang, Xiangnan He, Yong Liao, and Yongdong Zhang (2022), Addressing Unmeasured Confounder for Recommendation with Sensitivity Analysis. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. (KDD 22)

    [14] Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui Zhang, and Xiao-Hua Zhou (2022), On the Opportunity of Causal Learning in Recommendation Systems: Foundation, Estimation, Prediction and Challenges. International Joint Conference on Artificial Intelligence. (IJCAI 22)

    [15] Quanyu Dai, Haoxuan Li, Peng Wu*, Zhenhua Dong, Xiao-Hua Zhou*, Rui Zhang, Xiuqiang He, Rui Zhang, and Jie Sun (2022), A Generalized Doubly Robust Learning Framework for Debiasing Post-Click Conversion Rate Prediction. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. (KDD 22)

    [16] Peng Wu, Xinyi Xu, Xingwei Tong, Qing Jiang, and Bo Lu (2021), Semi-parametric Estimation for Average Causal Effects using Propensity Score based Spline, Journal of statistical planning and inference. 212, 153-168.

    [17] Peng Wu, Baosheng Liang, Yifan Xia, and Xingwei Tong (2020), Predicting Disease Risk by Matching Quantile estimation for Censored Data, Mathematical Biosciences and Engineering. 17(5):4544-4562.

    [18] Peng Wu, Qirui Hu, Xingwei Tong, and Min Wu (2020), Learning Causal Effect Using Machine Learning with Application to China's Typhoon. Acta Mathematicae Applicatae Sinica, English Series. 36(3): 702-713.

    Baidu
    sogou