数学与统计及交叉学科前沿论坛------高端学术讲座第114场
报告题目:Starting-point Entropy and Shigesada–Kawasaki–Teramoto Model
报告人:陈秀卿教授 中山大学
时间:2024年7月12日(周五)16:00-17:00
地点:阜成路校区综合楼1116
参加对象:4556银河国际在线全体教师及研究生
报告人简介:陈秀卿,中山大学“百人计划”教授,博士生导师,数学学院(珠海)副院长,中国工业与应用数学会第七届理事。研究方向为偏微分方程。在CMP、ARMA、SIMA等学术期刊上发表论文三十多篇。先后主持国家自然科学基金多项。
报告摘要:The existence of global weak solutions to the cross-diffusion model of Shigesada, Kawasaki, and Teramoto for an arbitrary number of species is proved. The model consists of strongly coupled parabolic equations for the population densities in a bounded domain with no-flux boundary conditions, and it describes the dynamics of the segregation of the population species. The diffusion matrix is neither symmetric nor positive semidefinite. A new logarithmic entropy allows for an improved condition on the coefficients of heavily nonsymmetric diffusion matrices, without imposing the detailed-balance condition that is often assumed in the literature. Furthermore, the large-time convergence of the solutions to the constant steady state is proved by using the relative entropy associated to the logarithmic entropy.