学术空间

数学与统计及交叉学科前沿论坛------高端学术讲座第48场

讲座题目Single-cell gene fusion detection by scFusion

主讲人:席瑞斌  北京大学

讲座时间:4月8日上午10点

讲座地点:腾讯会议:791 762 313


主讲人简介:

  席瑞斌,北京大学数学科学学院、统计科学中心研究员,长聘副教授,博士生导师。 2009年毕业于美国圣路易斯华盛顿大学,同年以助理研究员身份加入哈佛大学医学院从事生物医学信息学方面的研究。2012年9月加入北京大学。席瑞斌的主要研究方向是生物信息、高维统计、网络分析、贝叶斯统计、生物医学大数据、基因组大数据及肿瘤的精准医学。席瑞斌近年来有40多篇文章发表于PNAS, Science Translational Medicine等高水平的学术期刊。席瑞斌先后主持或参与过科技部973项目、国家重点研发项目、基金委重点项目及基金委面上项目等多个科研基金项目。


主讲内容

  Gene fusions can play important roles in tumor initiation and progression. While fusion detection so far has been from bulk samples, full-length single-cell RNA sequencing (scRNA-seq) offers the possibility of detecting gene fusions at the single-cell level. However, scRNA-seq data have a high noise level and contain various technical artifacts that can lead to spurious fusion discoveries. Here, we present a computational tool, scFusion, for gene fusion detection based on scRNA-seq. We evaluate the performance of scFusion using simulated and five real scRNA-seq datasets and find that scFusion can efficiently and sensitively detect fusions with a low false discovery rate. In a T cell dataset, scFusion detects the invariant TCR gene recombinations in mucosal-associated invariant T cells that many methods developed for bulk data fail to detect; in a multiple myeloma dataset, scFusion detects the known recurrent fusion IgH-WHSC1, which is associated with overexpression of the WHSC1 oncogene. Our results demonstrate that scFusion can be used to investigate cellular heterogeneity of gene fusions and their transcriptional impact at the single-cell level.


Baidu
sogou