学术空间

Rigidity result for semilinear subelliptic partial differential equation on Cauchy-Riemannian manifold

【数学与统计及交叉学科前沿论坛------高端学术讲座第123场】


报告题目:Rigidity result for semilinear subelliptic partial differential equation on Cauchy-Riemannian manifold

: 麻希南教授 中国科学技术大学

报告时间: 1014星期 11:00-12:00

: 阜成路校区教二楼402


报告摘要: On CR manifolds we get the rigidity result, i.e., subelliptic equations have no other solution than some constant at least when parameters are in a certain range, thus solved also the conjecture of Xiaodong Wang in his Math. Z. 2022 paper, in Riemannian geometry version the corresponding result was got by Bidaut Veron-Veron in 1991. The rigidity result also deduces the best constant for the Folland-Stein Sobolev inequality on closed CR manifoldsThis is a joint work with Qianzhong Ou and Tian Wu.


报告人简介:希南,1969年出生,1996年博士毕业于杭州大学数学系,现任中国科学技术大学数学学院教授博士生导师国家杰出青年基金获得者,国家级人才计划入选者、国家重点项目主持人;主要从事椭圆偏微分方程与几何分析研究,特别是在Monge-Ampere方程、经典凸几何与微分方程的几何性态等研究上取得了非常杰出的成就,部分成果发在四大顶尖杂志Invent Math上,在国际顶尖杂志发表论文50余篇。

Baidu
sogou